T2K Capabilities, Measurement and Plans

Daniel Cherdack
University of Houston
For the T2K Collaboration

NuSTEC RES Workshop 2019 PITT PACC, University of Pittsburgh October 2nd – 5th, 2019

Overview

- T2K: Detectors and Flux
- General Strategies
- Pion Production Measurements
 - Hydrocarbon Target (FGD1)
 - Water Target (FGD2 FGD1)
 - CH, H₂O, Brass (P0D)
 - On axis on CH, H₂O, Fe (INGRID)
- Looking to the future
 - Ongoing measurements
 - Prospects for the ND280 upgrade

Not covered (due to time): Coherent Neutral pion Multi-pion

ND280

- ND280 is the T2K off-axis ND
- Same off-axis angle as SK (2.5°)
- Contained in a 0.2 T magnetic field
- Three CH and H₂O target modules
 - P0D (water-in / water-out)
 - FGD1 (CH)
 - FGD2 (CH+H₂O)
- Three TPC trackers downstream from each target module

ND280 and the P0D

- ND280 is the T2K off-axis ND
- Same off-axis angle as SK (2.5°)
- Contained in a 0.2 T magnetic field
- Three CH and H₂O target modules
 - P0D (CH + water-in / water-out)
 - -FGD1 (CH)
 - FGD2 (CH+H₂O)
- Three TPC trackers downstream from each target module

ND280 and the FGDs

- ND280 is the T2K off-axis ND
- Same off-axis angle as SK (2.5°)
- Contained in a 0.2 T magnetic field
- Three CH and H₂O target modules
 - P0D (water-in / water-out)
 - FGD1 (CH)
 - FGD2 (CH + H₂O)
- Three TPC trackers downstream from each target module

INGRID

- INGRID is the T2K on-axis ND
- Main Purpose:
 - Monitor the beam stability
 - Beam direction
 - Time dependence
- Fe plates with CH scintillator bars
- Physics detectors:
 - Proton Module: all CH scintillator
 - Water Module: CH and H₂O

The T2K Flux

- Off-axis flux (2.5°) flux peaked at 600 MeV
- On-axis peak ~1 GeV
- Contamination from wrong sign, ne
- Stability monitored by INGRID

Data Samples

- Existing results: up to Run 4
- Next-gen results: up to Run 9

 ν -mode 1.51 x 10²¹ (47.83%) $\bar{\nu}$ -mode 1.65 x 10²¹ (52.17%)

General Strategies

- Flux integrated differential measurements
- Restricted phase space
- Fit backgrounds using sidebands
- Background shape parameters taken from oscillation analyses
 - Background params used in xsec extraction
 - Signal params used in eff correction

- Flux covariance (bins of Ev)
- Detector covariance in analysis bins
- SI systematics
- To unfold or not to unfold?
- Fake data studies:
 - Test fitter machinery
 - Evaluate bias
 - Validate error band coverage (of models)

Pion Production in the OA

2.0

1.5

- Main xsec systematics designed for the OA
- Single π production samples identified
- Data is below prediction

Events/(100 MeV/c)

Data / Sim.

200

150

100

1.2

Fit pulls up flux

v-mode

Res

Coh

Prefit

$CC1\pi^{+}$ in FGD1 (CH)

- Differential cross section in 7 kinematic variables
- Independent measurements
 - Define phase space for each
 - Fit same data with same set of parameters

- Sideband samples
 - Constrain CC0π and DIS
 - Shape and normalization parameters
- Unfolding:
 - D'Agostini
 - One iteration

TABLE V. Definition of the phase space restrictions used for the differential cross section measurements.

Observable	$\cos heta_{\mu}$	$\cos \theta_{\mu} > 0.2$	$\cos heta_\pi$	$\cos heta_\pi$	p_π	Michel
	> 0	$p_{\mu} > 0.2~GeV/c$	> 0.2	> 0	> 0.2~GeV/c	Electron
$d^2\sigma/dp_\mu d\cos\theta_\mu$	Y					Y
$d\sigma/dQ^2$		Y	Y		Y	
$d\sigma/dp_\pi$		Y	Y			
$d\sigma/d heta_\pi$		Y		Y	Y	
$d\sigma/d heta_{\pi\mu}$		Y	Y		Y	
$d\sigma/d\phi_{Adler}$		Y	Y		Y	
$d\sigma/d\theta_{Adler}$		Y	Y		Y	

Results: $d\sigma^2/dp_{\mu}d\theta_{\mu}$

- Includes
 Michele electron
 π tag sample
- Extends π phase space to low momentum
- Efficiency is non-zero, but not flat either
- Only PS restriction: θ_{μ} >0
- Relatively good agreement with data

Results: $d\sigma/d(Q^2, \theta_{\pi}, p_{\pi}, \theta_{\mu\pi})$

- PS restrict "hidden" variables
- Observe low Q² suppression
- Results that restrict low p_{π} fall below predictions

Results: $d\sigma/d(\phi_{Adler}, \theta_{Adler})$

$CC1\pi^+$ in FGD2 (H₂0)

- Differential cross section in μ and π kinematics
- Independent measurements
 - Phase space same for each
 - Fit same data with same set of parameters

- Sideband samples
 - Constrain DIS and CH-xsec
 - Shape and normalization parameters
- Unfolding:
 - D'Agostini
 - One iteration

Phase Space Restrictions

$$p_{u} > 200 \text{ MeV/c}$$

$$p_{_{\pi}} > 200 \text{ MeV/c}$$

$$\cos(\theta_u) > 0.3$$

$$cos(\theta_{\pi}) > 0.3$$

Results: π kinematics

• Momentum:

- Agrees well for $p_{\pi} > 700 \text{ MeV}$
- Below prediction 300 < p_{π} < 700 MeV
- Above prediction p_{π} < 300 MeV

Angle:

- Agrees well for $\cos \theta_{\pi} < 0.94$
- Large dip above $cos\theta_{\pi} > 0.94$
- Gets a bit better $\cos \theta_{\pi} > 0.98$

Results: µ kinematics

• Momentum:

- Shape agrees well
- Just below NEUT predeiction
- Well below GENIE

Angle:

- Shape agrees well
- Just below NEUT predeiction
- Well below GENIE

$CC1\pi^+$ in INGRID (CH&H₂0)

- Differential cross section in μ kinematics
- Double differential fit
- Fit CH and CH + H₂0
- No magnetic field
- Good momentum resolution for contained tracks

- Sideband samples
 - Constrain CC0 π and CH-xsec
 - No DIS sample
 - Shape parameters
- Unfolding:
 - D'Agostini
 - Data based convergence criteria (~10 iterations)

Phase Space Restrictions

$p_{\mu} > 400 \text{ MeV/c}$	$\cos(\theta_{\mu}) > 50^{\circ}$
$p_{_{\pi}} > 400 \text{ MeV/c}$	$\cos(\theta_{\pi}) > 50^{\circ}$

Results: CH Target

- Cross section on μ kinematics
- Cross section sits below NEUT prediction
- Shape agrees well

Results: H₂0 Target

- Cross section on μ kinematics
- Cross section sits below NEUT prediction
- Shape agrees well

$CC1\pi^+$ in the P0D (H₂0+CH)

- Differential in p_{μ} - θ_{μ}
 - Projected into 2 x 1D
 - Results in p_{μ} and θ_{μ} are from a single fit
- Combined measurement on multiple targets:
 - $-CH + H_2O + Brass$

- Sideband samples
 - Constrain $CC0\pi$ and DIS
 - Shape and normalization parameters
- Not unfolded:
 - Result in reco. μ kinematics
 - Difficult to compare to models

Efficiencies

- Fairly insensitive to:
 - Most cross sections
 - FSI parameters
 - P0D mass uncertainties
- Constraints on:
 - $-M_AQE$
- Consistent with mock data study results

Mock Data and Data χ^2

- Compare data fit with ensemble of Mock Data sets
- Random throws
 - Flux parameters
 - All systematics
 - Statistics
 - Statistics+systematics
- Mock data shows that results should be statistics limited
- Data χ² agrees with random statistical(+syst) fluctuation

$d\sigma/d(1-cos\theta_{\mu})$ 1μ1π After FSI

- Result for $p_{\pi} > 250 \text{ MeV}$
- Sits well below NEUT prediction
- Agreement improves at higher angle
- Agreement improves for newer models (B-S, MK)

$d\sigma/dp_{\mu}$ 1μ1π After FSI

- Result for $p_{\pi} > 250 \text{ MeV}$
- Sits well below NEUT prediction
- Agreement improves at higher momentum
- Agreement improves for newer models (B-S, MK)

In the works

- Measurements:
 - CC ν π ⁺ on H₂0 (FGD2)
 - Improved phase space
 - Promising studies on Michele momentum reconstruction
 - $CC\overline{\nu}$ π on CH (FGD1)
 - $CC\overline{\nu} \pi$ on H₂0 (FGD2)
 - CC ν π + p on CH (FGD1)
 - Tracked p allows transverse variable reconstruction
 - Possible to separate C and H
 - Small phase space
 - Large backgrounds

- Analysis improvements:
 - Combined fits:
 - CH+H20, $v+\overline{v}$
 - CC0 π + CC1 π + 4 π acceptance
 - Likelihood fitter
 - No more D'Agostini
 - Controlled regularization
 - New flux estimate / errors
 - New cross section systematics
 - DIS/SIS region
 - π Secondary interactions
 - Nucleon FSI
 - New π production models
 - Coherent B-S
 - Resonant MK

Analysis Improvements

Future: ND280 Upgrade

- Remove P0D and add SuperFGD
 - High-res 3D scint. detector
 - Sandwiched between TPCs
- Lower thresholds
- 4π (ish) acceptance
- Still hard to reco pions
- Installation in 2021

		# of events	Purity (%)			
		(/10 ²¹ POT)	СС0π	CC1π	CC Other	
current	FGD 1	50507	72.5%	64.0%	68.2%	
	FGD 2	50125	71.5%	62.3%	63.8%	
upgrade	FGD 1	52655	72.9%	64.1%	64.7%	
	FGD 2	51460	71.6%	62.9%	63.3%	
	SuperFGD	95490	72.5%	70.3%	72.7%	

Efficiency to measure muon vs direction

Summary and Conclusions

- Four T2K CC1 π ⁺ cross section measurements were presented
- Central themes:
 - The general shape of the μ kinematics agree
 - When π low momentum phase space is restricted: data is below predictions
 - When π low momentum phase space is restored: normalization is recovered
- Improved measurements are in the works
- Detector upgrade has been approved: coming in 2021

Thank you for your attention.

Questions?

Backup Slides

Avoiding Signal Model Dependence

- Signal definition
- Event selection technique
- Constraining backgrounds with sidebands
- Signal-like background treatment
- Efficiency corrections

Signal-like Backgrounds

Signal-like Backgrounds

Signal-like Backgrounds

Efficiency Corrections (1μ1π detected)

Efficiency for the $1\mu 1\pi$ detected signal definition, and associated uncertainties

Efficiency Corrections $(1\mu 1\pi After FSI)$

Efficiency for the $1\mu 1\pi$ afterFSI signal definition, and associated uncertainties

1μ1π detected ≠ 1μ1π after FSI

Events that pass sig def 1 but not sig def 2, and must be subtracted to convert from sig def 1 but to sig def 2

1μ1π detected ≠ 1μ1π after FSI

Breakdown by interaction type of events that pass sig def 1 but not sig def 2, and must be subtracted to convert from sig def 1 but to sig def 2

MisIDed Signal --- Background Postfit---DIS

Anti Nu mi

- Prefit MC greatly overestimates the data
- Overestimate roughly flat
- The size of discrepancy decreases with the amount of signal predicted

- Post-fit MC agrees well with
- Almost all bins within 1σ error band

data

- Fraction with >1σ
 discrepancy consistent with
 expectations given number
 of bins
- Some tension between the Kalman Exiting Selected and Near Sideband samples
- Tension is at high momentum

MisIDed Signal

Event Rate Comparisons

- Compare data with various models
 - NEUT 5.3.3
 - NEUT with res RS → MK
 - NEUT with coh RS → BS
 - NEUT with both changes
- Track errors and correlations

$1\mu 1\pi$ Detected Cross Section

- Compare data with various models
 - NEUT 5.3.3
 - NEUT with res RS → MK
 - NEUT with coh RS → BS
 - NEUT with both changes
- Track errors and correlations

1μ1π Detected Cross Section

- Compare data with various models
 - NEUT 5.3.3
 - NEUT with res RS → MK
 - NEUT with coh RS → BS
 - NEUT with both changes
- Track errors and correlations

